M
my

University of Wisconsin - Madison MAD/PH/816
August 1994

The asymmetric flux tube

M.G. Olsson and Sinisa Veseli

Department of Physics, University of Wisconsin, Madison, WI 53706

Abstract

We consider a relativistic flux tube with arbitrary mass spinless quarks at
the ends. In the unequal mass case the additional constraint that the center of
momentum is fixed must be included. An analytic classical circular solution
is found and is used as a correspondence limit. The quantized equations for
mesons at rest are constructed and solved. A comparison is made with all
available spin-averaged heavy-light and heavy-heavy states. We find evidence
for running of the heavy quark masses as well as the short range coupling

constant.



1 Introduction

The relativistic flux tube (RFT) model shows promise to provide a realistic de-
scription of all meson states. The RFT model is in essence a description of dy-
namical confinement [1]-[4]. For slowly moving quarks rigorous QCD relativistic
corrections [5]-[7] clearly demonstrate that the scalar confinement potential picture
is incorrect [2, 7]. On the other hand, the RFT dynamics are consistent with both
spin-dependent [3, 8, 9] and spin-independent [2, 3] QCD expectations. The basic
assumption of the RFT model is that the QCD dynamical ground state for large
quark separation consists of a rigid straight tubelike color flux configuration con-
necting the quarks. In this idealized limit the quarks and tube are shown in Fig.
1. Although based on a simple physical picture this model follows directly from the
QCD Lagrangian with natural approximations to the Wilson action [10].

The heavy-light mesons are important for many reasons. For our present pur-
poses, these mesons exhibit relativistic dynamics while still maintaining some sim-
plifying aspects. The heavy quark mass supresses most spin dependence so that a
spinless quark analysis has considerable validity. The one heavy quark also means
the reduced Salpeter equation [11] will be appropriate and that a relative time degree
of freedom is unimportant.

In the present work we have focused on the following points:

1. The extension to unequal quark masses requires the solution of several tech-
nical problems. These problems have their origin in locating the center of

momentum and ensuring that the total momentum of the meson vanishes.

2. The classical solution for rotational motion with unequal quark masses pro-
vides a useful check on our quantum solution. We have obtained an analytic
solution which satisfies the requirement that the total meson momentum is

Zero.



. Both spinless and fermionic quark analyses share a common orbital angular
momentum analysis. The techniques developed here will therefore be of direct

utility in the more realistic calculation.

. Because of the suppressed spin dependence due to the small color magnetic

moment of the heavy quark, a spin-averaged analysis is realistic.

. We reconsider the question of the symmetrization of operators in the quan-
tized RFT equations. Algorithms are developed for finding the symmetrical

perpendicular velocity operators.

. We have considered all the spin averaged heavy-heavy and heavy-light states
and found the expected runnning of the heavy quark masses, as well as the

short range interaction, follows in a natural way.

As established previously [1]-[4] the classical angular momentum of two quarks

plus two tube segments joined at the CM is

J = Wr1rYJ_1UJ_1711 + 2ar%f(,UJ_1) + (1 — 2) ’ (1)

where

W'r,- = \/Pgi‘i‘m%, (2)

arcsin v _
dvy f(vy) = TL -1, (3)
v0 = 1-vl. (4)

The classical Hamiltonian for this system is

arcsin v
HZWTI’)/J_1+QT1U7J_1+(1—>2). (5)
13

For unequal mass quarks additional conditions [3] must be imposed so that the

meson CM is at rest. These conditions are

Pry =Pry =Dr (6)
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r _
PL:OZWTI’HIULI—i—av—l(l—yhl)—(l—)?) . (7)

1

Finally, the straight flux tube condition is

U _ VL (8)

r1 To

For equal mass quarks the P, condition (7) is satisfied since v;, = v,,. For
heavy-light mesons where my > m; and also my > ary, the P, condition can be
satisfied with v, ~ 0 (i.e., the CM point is coincident with the heavy quark). For
all other (asymmetrical) mesons all of the above relations (1-8) must be used in the
construction of the solution. This aspect is the central problem addressed here.

In section 2 we consider the purely rotational classical solutions to the RF'T
equations. These results will provide useful correspondence check on the quantum
solution. Section 3 formulates the quantized RF'T equations and their solutions are
discussed in section 4. In section 5 we test the model by comparing to all observed
spin-averaged masses of mesons containing one or two heavy quarks. We observe
that better global agreement with the data is obtained if the heavy quark masses

run with QCD scale. Our conclusions are summarized in section 6.

2 Classical (Yrast) Solution

The classical solution of the RFT equations having minimum energy for a given
angular momentum (the yrast solution) corresponds to circular motion, i.e., p, = 0.
In this case the RFT equations (1) and (5) become

J = S ARICAREAS + 2aT%f(IUJ_1) + (1 - 2) ) (9)
arcsin v
H = ml’)/Ll-FCLTlTJ_l-F(l—)Z). (10)
11

The condition (7) that the CM momentum vanishes becomes

r _
PL=0=myvy,01, + av—l(l —yH-(1=2). (11)
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Along with the straight tube condition (8), the above three relations can be used to
find the yrast solution M = H(J).

A short cut to the yrast solution directly uses the circular dynamical condition.
In the Lagrangian approach [1, 12] the radial derivative of the Lagrangian, must
vanish since p, = 0. Another way to obtain the same result is to consider the force
on the i quark in two reference systems. In its rest frame the quark experiences
a force —af; due to the tube. In the CM rest frame, where the quark is moving
with the velocity v, perpendicular to the tube, the transverse force is a/7,, and for
circular orbite this must equal the mass m;7y,, times the centripetal acceleration or

v? a

1
V) — = — . 12
(mZ’VJ_z) T v ( )

This, along with the straight string condition (8), assures that the meson is at rest
(i.e., the total linear momentum (11) vanishes). From (12) we also have

ar;

2
= —, 13
YL m; + ar; (13)
= 1+ —. 14
71 + i (14)
The total interquark distance is evidently
rT=71+To s (15)
and using (8) and (13), we obtain
= meo + ar ’ (16)
mq + mq + 2ar
ry — m1 + ar ' (17)

mi1 + me + 2ar
When the above expressions are substitued back into (13) and (14), we find

5 ar(msy + ar)
pr— 1
Ul (my +ar)(my +mg +ar)’ (18)
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02 = ar(my + ar) (19)
L2 (mg + ar)(my +my +ar) ’

(mi + ar)(my + mg + ar)
m;(my +mg + 2ar)

7 (20)

The quantities r;, v, and 7y, have now been expressed in terms of the interquark
distance r. The circular RFT equations can similarly be expressed in terms of r.

Equation (9) for the meson angular momentum becomes

A var [Vmi(ma + ar)} + ymg(my + ar)

r (my + my + 2ar)?

N

}

+

(m1 + mg + ar)(my + ar)(mq + ar)
2

ETE—— [arcsinv,, + arcsinv,,] , (21)

and the state mass M from (10) is

M = mi + meo + ar
B m1 + me + 2ar

\/ml(ml +ar)+ \/mQ(mg +ar)

\/ar(ml + mg + ar)(my + ar)(mg + ar)

m1 + me + 2ar

+ [arcsinv, + arcsinv,,| . (22)

In (21) and (22) v,, and v,, are functions of  given by (18) and (19). The above
circular solutions reduce to the equal mass case considered earlier [12].

Now we can easily establish three limiting cases:

1. Heavy-heavy case (m, ms > ar)

Equations (21) and (22) can be expanded in the small quantities ;- and ;=

with results

2 = (M) 3 (23)
mi + mo ’
3
M = m1+m2+§ar. (24)



From the above the shifted Regge slope is

dJ mimy % J_%
= ( ) : (25)
d(M — my — my) mi+mo/ 3a3
. Heavy-light case (m; = 0,my > ar)
Again, from (21) and (22) in this limit we find
2
war
- - 2
- (26)
M = mg+ %‘” . (27)
Eliminating r the shifted Regge slope is
J 1
=— (28)

(M —my)?2  7a

. Light-light case (m; = my = 0)

For zero mass quarks the tube carries all the rotational momentum and energy

of the meson. In this limit we obtain

] = (29)
M = % . (30)
giving a Regge slope (Nambu) of
J 1
M 9ma (31)

The various limiting situations are illustrated in Figs. 2 and 3. We choose
my = 1.5GeV, a = (2r)~'GeV? and plot the shifted Regge slope as a function of J.

In Fig. 2 we take m; = 0. The solid curve shows a shifted slope of 2 units at small

J as expected from the heavy-light limit of (28). At large J where my < ar the

slope approaches the Nambu limit (31). For m; = 0.5GeV the solid curve of Fig. 3
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illustrates the yrast shifted Regge slope. At small J the heavy-heavy limit (25) is
obtained, and for large J again the Nambu limit of unit slope is obtained. In both
Figs. 2 and 3 the dashed curve is the quantum solution which will be discussed in
section 4. It should be noted that in each case the Regge behaviour is most simply

expressed in terms of excitation energy M — mq — mo.

3 Quantization of the Classical Equations

3.1 Equal-mass and the heavy-light case

The classical equations (1-8) for the equal-mass case reduce to

J

o= Weyivi +arf(vy), (32)

H = 2W,y, + ar T 0L , (33)

Vi
with
W, = \/Pg + m? (34)

and

1  arcsinv; 1

flor) = —(————-—), (35)

_4’UL V] YL

Since in the limit of large quark masses [1, 3]

Vi; — J , (36)

m;r
we have a good reason to believe that v,, and v,, should be hermitian operators.
Also, if we could invert the classical angular momentum equation for the equal-mass

case (32), we would have
v = ’UJ_(Tapg: J) ’ (37)

which means that [v,,7] # 0 when v, and r are considered as quantum-mechanical

operators. Therefore, the classical equations should be symmetrized and quantized
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as [1]

J o s, po-t2, (38)
’ r ror? ’
I(I+1)
2# = {Wrywvi} +afr, fvl)}, (39)
arcsin v

H = {Woy}+3{n b (10)

where {A, B} = AB + BA. Similarly, the heavy-light case classical equations with

mo as the heavy quark mass,

J
= = Wiyses +20rf(v1) (a1)
H o= my+ Wy +ar o (42)
V1
after quantization become
(1+1) 1
# = E{Wra /YJ_'UL} + CL{T, f(UJ_)} ) (43)

a . arcsinv;

e b (44

1
H = m2+§{Wr,’YJ_}+

3.2 General case

In the general case with m; # my things get more complicated, but proceed along
similar lines. Besides equation defining the angular momentum, we also require that
total momentum of the system must be zero, which is trivially satisfied in the two
special cases considered above.

We begin by using the straight tube condition (8) and the quark separation
variable (15) which give

rp=——"—r, 1=12. (45)



The classical RFT equations (1-7) can then be expressed in terms of v, ’s and r:

J v? v?
R er ’YJ-I 11 + Wr2 ryJ-2 1o
r V1, + V1, V1, + V1,
1 - .
+ ar————(f(v1,) + f(v1,)) (46)

(UJ-l + UJ-2)2

PJ_ =0 = W717L1UL1 _W"”2,YJ-2UJ—2

1 1 1
(), (47)
Vi, UL, YL AR

H = WT17J-1+WT27J-2

1
— i i . 48
+ ar 1 T 0L (arcsinv, , + arcsinv, ) (48)

Here we have

Wn’ =Y p% + mz2 ) (49)

because of radial momentum conservation, and the function f(v,) is defined as
~ 1 Vi

flvy) = §(arcsinvL - V_L) = fQ(Z%) :

If we could invert equations (46) and (47) for v, and v,,, they would be in general

(50)

different functions of r, p, and J, so that corresponding quantum mechanical oper-
ators will not commute. Therefore, our quantized equations will contain products
of three non-commuting factors, and we have to find the way to symmetrize them.
In doing that, we have to keep in mind that our procedure must reduce to equa-
tions (39,40) and (43,44) in the equal-mass and the heavy-light limits, respectively.
The easiest way to ensure this is to symmetrize first between non-commuting factors
containing v, , and v, to obtain symmetric operators O(v,,,v.,), and then to sym-
metrize between these operators and radial operators. If we do that, our quantized
equations (46-48) become

(1+1)

r

1

1 1
= — '/‘/ , = 2 ,
2{ T1 2 {ny—l/UJ_l ’ULI + UL2 }}
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1 1 1
— — 2 —_—
+ 2{”T2’ 2{7J-2UJ_2’ v, v, }}
1

(UJ—I + UL2)2

1 1 - 7
se{r {7 (vi) + flvi),

s (51)
1 1

PJ_ =0 = E{WTU’VJJUJ-J’_§{WT2”7J-2/UJ—2}
a 1 1 1 1

- gl ——— 1, (52

2701, Fv1, YL Vi

1 1
H = §{era7L1}+§{WT2’VJ—2}
1 1

+ g{r, AT arcsinv, , + arcsinv,,}} . (53)

4 Numerical Solution of the Quantized Equations

The RFT Hamiltonian (53) contains two unknown operators, v, and v,,, which
are in turn defined by equations (51) and (52). If we introduce a complete set of

basis states {ex(r)} and then truncate at a finite number N [13],

P(r) ~ ;; ckex(r) (54)

these equations become two coupled transcendental N x N matrix equations involv-
ing unknown matrices of v,, and v,, and known 7, 1, and W,, matrices [4]. Our
numerical solution for v,, and v, is based on a simple x = F'(z) iteration algorithm
applied to transcedental matrix equations.

Equation (51) can be written in the form

1 I(1+1) 1
W — 'U2 = 47 U2
T1 vy, +UL27J_1 11 r YLV, vy, +U_L2
1
2
— v, ——— W,
{fYJ-l 14 ’UJ_l +'UJ_2} T1
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1

— W 2 -
{ T21{7J-2UJ_2’UJ_1+UJ_2}}

— afr o) + flvr,), ——

(ULl + UJ_z)Z

e (89)

If we multiply this equation by vy} (vy, +vi,)W, ! from the left, we get

L B 1(1+1) 1
,ULl = ULll’)/Lll(ULl + /ULQ)W'I‘ll (4T - erlevilm
1 2
1
2
. - Wr
1Ly, vy, + ULQ} '
1
— W, 1y —
Wy 171070, v, —f-’UJ_z}}
1

— afr,{f(vr,) + f(vL,), )2}} ) - (56)

(UJ-I + v,

We can do the same thing with equation (52) and obtain

v, = r)/j_llwr_ll (_fYJ_1/UL1W’r‘1 + {WT‘Qi ’YJ_QIUJ_2}
1 1 1 1

+oan gl = 1)) (57)
For a succesful itterative solution we must start with a good initial guess for matrices
of v, and v,,. We then have an initial guesses for matrices of all functions of these
two operators and we can evaluate the right sides of equations (56) and (57) as the
new guesses for v, matrix (let us call them v, ,(J) and v,,(P,) . Since we want
to have both equations (51) and (52) satisfied simultaneously, we mix these two
guesses with weights depending on the extent to which the equations (51) and (52)
are satisfied, with the initial guesses for v,, and v,,. For example, if the equation
(51) is satisfied twice as well as the equation (52), then for the new guess for v, , we
take zv 1, (J)+3v1,(PL)). This ensures that both equations defining v, and v, will
be simultaneously satisfied. Finally, since we are solving for matrices here, it is clear
that our iteration scheme will be only marginally stable, so we employ a relaxation

procedure. For the final new guess for v, we take (1 — n)v,,(old) + nv,,(new),
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where 7 is the small number (usually 7 < 0.1, and it becomes smaller if we increase
number N of the basis states that we are working with). After we have found the
new guess for v, ,, we do the same thing for v, ,, and keep iterating until we achieve
the required precision.

Using the same procedure, we were able to solve for v, the equal-mass and the
heavy-light case equations (39,43) even for as many as 50 basis states without too
much effort and to achieve the very high accuracy of 8 decimal places. The initial
guess in these two cases is obtained by finding the v, from the non-symmetrized
angular momentum equations [4], and then symmetrizing it by taking the average
of the non-symmetric v; matrix and its transpose. The eigenvalues obtained from
the symmetrized Hamiltonians (40,44) are usually lower by at most a few MeV’s
than the eigenvalues obtained from the non-symmetrized equations. In Fig.4 we
compare the non-symmetrized solution [4] for m; = my = 0 (solid curve) with the
symmetrized solution shown at integral angular momentum quantum number /. The
difference between symmetrized and unsymmetrized solution is at most a couple of
MeV’s over a wide range of rotational and radial excited states. With larger quark
masses this difference decreases.

In the general case we have two unknown matrices and the equations are much
more complicated. In addition, a good initial guess for v,, and v,, is not easy to
find. Usually, for the initial guess for v, in the case of [ > 0 (the [ = 0 solution
is trivial since v, = v;, = 0) we use symmetrized equal-mass guess for m = m;
and the same angular momentum quantum number /. Despite these complications,
for N < 15 basis states we have found that our procedure converges very quickly
no matter how large the difference between my and m, is (i.e., no matter how bad
initial guess is). In comparing with experimental data, we require only the lowest
one or two eigenvalues, and these are determined within 10 MeV if we use 5, and
within 1 MeV if we use 10 basis states. Fits with N = 10 are reliable and completely

adequate for our purposes.
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In Figs. 2 and 3 we compare the ground state quantum solution (for continuous
values of [ [4]) with the classical yrast solution. We show in these figures the pre-
dicted shifted Regge slope. The correspondence limit at large angular momentum

is well satisfied.

5 Comparison with Experiment

As mentioned earlier, mesons containing at least one heavy quark will have relatively
small dependences on quark spins. It seems realistic then to compare our predictions,
which do not include quark spin, directly to spin averaged energy levels. There is
however an additional feature which must be incorporated in the model to have a

phenomenologically successful result.

5.1 Short range interaction

The flux tube configuration has been assumed to dominate when the quarks are
widely separated. At short distance there must be an attractive singular interaction
due to the single gluon exchange. We parametrize short and intermediate distance

interaction by the usual potential

K

Vs(r) = 0 (58)

4
3

to the well known “Cornell potential” [14]; a superposition of linear confinement

where at short distances kK = Za,. In the static limit the total potential then reduces
Veong = ar and the Coulombic term (58). From general consideration we expect &
to “run” such that it will increase slowly as the quarks are separated (and hence the
QCD scale decreases). In our comparison with data we will allow different ’s for

c¢, bb and the heavy-light mesons.
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5.2 Constant term

A constant term is also added yielding our model Hamiltonian
H=Hpr +C -~ (59)
r

with Hppr given by (53). The presence of the constant term does not change the

model predictions but it does determine how the heavy quark masses change with
QCD scale.

5.3 The Data and Comparison with Theory

We have used the quark model spectroscopic assigments and level masses of the
Particle Data Group [15] to extract spin averaged states for heavy-light mesons
(Table 1) and heavy-heavy mesons below flavor treshold (Table 2).

From QCD one expects that the strong coupling constant and quark masses will
become smaller as the QCD scale increases [16]. Since the energy scale for mesons
is in the non-perturbative regime, one cannot expect that perturbative expressions
for the running of s and quark masses agree quantitatively with the model results.
However, one can expect qualitative agreement.

In order to show this, we have performed series of fits using the generalized RFT
model equations, in which we have fixed the constant C' in the Hamiltonian, the
string tension a, and also the light quark mass m, 4. The free parameters of the fits
were k(hl), ms(hl), m.(hl) and my(hl) for the heavy-light mesons, k(c¢) and m.(cc)
for the c¢ mesons, and k(bb) and my(bb) for the bb mesons. As an illustration of the
quality of our fits, in table 1 and 2 we present fits for the heavy-heavy and heavy-
light mesons for C = —0.8GeV, a = 0.2GeV? and m, 4 = 0.3GeV. The resulting
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values of free fit parameters were

m, = 0487 GeV
m., = 1955 GeV
hl mesons ,
k(hl) = 0.576 |
m. = 1816 GeV |
cC mesons , (60)
k(ce) = 0.532 ]
my, = 5.153 GeV 5 mesons
k(bb) = 0.440 '

As one can see from tables 1 and 2, fits are quite reasonable. All spin averaged
heavy-light states were reproduced to within 2M eV, while heavy-heavy states had
errors within 10MeV .

To observe running in the RF'T model, let us first consider strong coupling con-
stant Kk = %as. If we make the reasonable assumption that meson dynamics is
governed roughly by the reduced mass of its constituent quarks, we expect that x
will decrease as we increase light quark mass (m, 4, ms), and therefore the reduced
mass. Furthermore, as we go to from the heavy-light to ¢ and then to bb mesons,
energy scale again increases, and coupling constant should decrease. This behaviour
is exactly what we see in the Fig. 5.

As far as m. and m, are concerned, first of all we expect larger heavy quark
masses for m, 4 = 0, since meson mass is roughly the sum of masses of its con-
stituents, and this is shown on Figs. 6 and 7 (two dashed lines). Furthermore,
the constant C should just renormalize the heavy quark masses in the heavy-heavy

systems (m; — m; + 3C). From our fits we find (full lines on Figs. 6 and 7)

m.(C) = 1.368GeV — 0.560C' (c€ mesons) , (61)
my(C) = 4.739GeV — 0.520C (bb mesons) , (62)
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as expected. For the heavy-light systems, one might expect that we have m; —
m; + C, since we have kept the light quark masses fixed. For m, 4 = 0.3GeV our
fits give (dashed lines on Figs. 6 and 7)

me(C) = 1.078GeV — 1.094C (63)
my(C) = 4.571GeV — 1.025C (64)

and for m,, 4 = 0 we find

m(C) = 1.188GeV — 1.081C | (65)
my(C) = 4.660GeV — 1.024C . (66)

Also, as stated before, one would expect that heavy quark masses should decrease
as we go from the heavy-light to the heavy-heavy systems. As we can see from the
Figs. 6 and 7, this is satisfied only for large negative values of C'. This gives us
a an estimate of the upper limit for its possible values. In particular, C' must be
more negative than about —0.5GeV for both m,. and m, to run in generally accepted
manner.

Finally, from the Fig. 8 one can see that strange quark mass (obtained from the

heavy-light fits) is almost independent of C.

6 Conclusions

In this paper we have discussed the relativistic flux tube model with arbitrary mass
spinless quarks on its ends. We have obtained the classical rotational solution
(yrast). The quantum solution is also proposed and solved numerically. In both
the classical and quantized solutions an important ingredient is the condition of
fixed center of momentum. The quantum solution also involved a careful treatment
of symmetrization of the equations of motion. We have confined our comparison of

the RFT with data to mesons containing at least one heavy quark primarily because
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in this case spin dependence should be small enough that the spin averaged data can
be compared to our spinless quark calculation. We have done a simultaneous fit to
all of the available heavy-light and heavy-heavy data, and we have obtained an ex-
cellent fit to the spin averaged levels. To achieve this agreement we have allowed the
short range coupling constant x and the heavy quark masses m, and m; to run with
QCD scale. We note that x always decreases with increasing scale (reduced mass),
and that the heavy quark masses decrease with increasing scale if the constant C' is
more negative than roughly —0.5GeV'.

It will be important to include spin in our model. Fortunately the orbital angular
momentum discussion in this paper will form a key ingredient of the more complete
calculation. The results will be somewhat different even for the spin averaged case
since a Darwin type term will arise due to the fermionic nature of the quarks both
at long and short range. The RFT model formulation with fermionic quarks has

been discussed in some detail [3] previously.

ACKNOWLEDGMENTS

We would like to thank Collin Olson and Paul Stevenson for helpful discussions.
This work was supported in part by the U.S. Department of Energy under Contract
No. DE-AC02-76ER00881 and in part by the University of Wisconsin Research

Commitee with funds granted by the Wisconsin Alumni Research Foundation.

18



References

[1] Dan LaCourse and M. G. Olsson, Phys. Rev. D 39, 2751 (1989).

[2] Collin Olson, M. G. Olsson and Ken Williams, Phys. Rev. D 45, 4307 (1992).
[3] M. G. Olsson and Ken Williams, Phys. Rev. D 48, 417 (1993).

[4] C. Olson, M. G. Olsson and D. LaCourse, Phys. Rev. D 49, 4675 (1994).

[5] E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981); D. Gromes, Z.
Phys. C 22, 265 (1984); 26, 401 (1984); A. Barchielli, E. Montaldi and G. M.
Prosperi, Nucl. Phys. B296, 625 (1988); B303, 752(E) (1988).

[6] A. Barchielli, N. Brambilla and G. M. Prosperi, Nuovo Cim 103A, 59 (1989).
[7] N. Brambilla and G. M. Prosperi, Phys. Lett. 236B, 69 (1990).

[8] W. Buchmiiller, Phys. Lett. 112B, 479 (1982).

[9] Robert D. Pisarski and John D. Stack, Nucl. Phys. 286B, 657 (1987).

[10] A. Yu. Dubin, A. B. Kaidalov and Yu. A. Simonov, Journal of Nuclear Physics,
56/12, 213 (1993); Phys. Lett. 323B, 41 (1994).

[11] E. E. Salpeter, Phys. Rev. 87, 328 (1952).

[12] Alan Chodos and Charles B. Thorn, Nucl. Phys. B72, 509 (1974); M. Ida,
Prog. Theor. Phys. 59, 1661 (1978).

[13] A discussion of the Galerkin method and the definition of the specific basis
states used here is found in S. Jacobs, M. G. Olsson and C. J. Suchyta III,
Phys. Rev. D 33, 3338 (1986).

19



[14] T. Appelquist, R. M. Barnett and K. D. Lane, Ann. Rev. Nuc. Part. Sci. 28,
38 (1978).

[15] Particle Data Group, Phys. Rev. D 50, 1320 (1994).

[16] H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976).

20



TABLES

Table 1: Heavy-light spin averaged states. Spin-averaged masses are calculated in

the usual way, by taking 2 of the triplet and } of the singlet mass.

state spectroscopic label spin-averaged theory error
JP 2541, mass (MeV) (MeV) (MeV)

ct, cd quarks

b (s67) 07 50 15 (1974) 1972 —2

D* (2009) 1- 351

D, (2424) 1t 'P, | 1P (2424) 2426 2

c5 quarks

D, (1969) 07 5o 1S (2075) 2077 2

D: (2110)  1° 39, |

D, (2537) 1% 1p ] 1P (2537) 2535 —2

b, bd quarks -

B (5219) 07 5o 18 (5312) 5313 1

B* (5325)  1- 3

bs quarks

B, (5368) 0~ 1S, | 15 (5409) 5408 ~1
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Table 2: Heavy-heavy spin averaged states. Since 7,’s have not been observed yet,
in calculating spin averaged mass for all S states in bb system we assume Y — 7, =
40+ 20MeV on the grounds that this splitting should be approximately one third of
the corresponding splitting in the cc systems. We estimate that the error introduced
in this way is probably less than 5MeV. We also assume that p-wave hyperfine
splitting in the bb mesons is negligible.

state spectroscopic label spin-averaged theory error
JP 2SHLL, mass (MeV) (MeV) (MeV)

c¢ quarks

e (2979) 0~ S 1S (3068) 3066 —2

¥ (3097) 1- 39, |

Xoe (3415) 0t 3P |

xie (3511) 17 B 1P (3525) 3519 6

Xeo (3556) 2+ 3P,

he (3525) 1t P

e (3594) 07 25 25 (3663) 3672 9

W (3686) 1 235, |

bb quarks

T (9460) 1- 35, | 1S (9450) 9451 1

Y (10023) 1 255, | 25 (10013) 10004 -9

Y0 (10355)  1- 333, | 35 (10345) 10349 4

Xo» (9860) O 3p, |

X (9892) 1+ 3p, 1P (9900) 9905 5

X (9913) 2+ 3p, |

Xby (10232)  0F 2P, |

X, (10255) 1% 2P, 2P (10261) 10260 1

X, (10268) 2+ 2P,
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FIGURES

Figure 1: Portion of a meson consisting of a segment of flux tube from the center of

momentum to the i** quark.

Figure 2: Yrast solution (solid curve) compared to the quantum solution (dashed
curve) for the displaced Regge slope with m; = 0 and ms = 1.5GeV. We compare
our solution for the same value of J (yrast) and [ (quantum). In both cases the tran-
sition from heavy-light to light-light dynamics is clearly seen by the slope dropping

from two to unity.

Figure 3: Yrast solution (solid curve) compared to the quantum solution (dashed
curve) for the displaced Regge slope with m; = 0.5GeV and my = 1.5GeV . In this
case we observe the transition from heavy-heavy dynamics at low [ to light-light

dynamics at large [.

Figure 4: Comparison of the symmetrized and non-symmetrized equations for quark
masses m; = my = 0 with N = 50 basis states. The non-symmetrized equations
(32) and (33) discussed in [4] are found to agree with the fully symmetrized solutions
of (39) and (40) to better than 5MeV .

Figure 5: Strong coupling constant as a function of C' in the heavy-light (for m, 4 =0
and my 4 = 0.3GeV) cc and bb mesons. The values of x found are roughly indepen-

dent of C, but systematically fall with running QCD scale (reduced mass).

Figure 6: Mass of the ¢ quark as a function of C' in the heavy-light (for m,q = 0
and my 4 = 0.3GeV, dashed lines) and cc mesons. For C' less than about —0.5GeV

m,. falls with increasing QCD scale (reduced mass).
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Figure 7: Mass of the b quark as a function of C in the heavy-light (for m, 4 = 0
and my 4 = 0.3GeV, dashed lines) and bb mesons. For C less than about —0.3GeV

m. falls with increasing QCD scale (reduced mass).

Figure 8: Mass of the s quark as a function of C in the heavy-light (for m, 4 = 0

and my 4 = 0.3GeV) mesons.
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